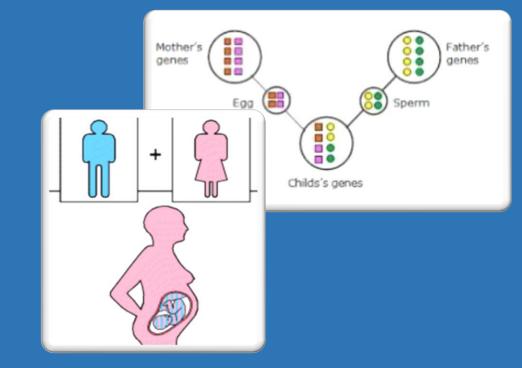
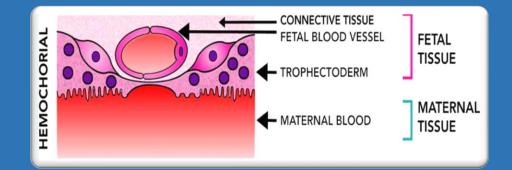


Stanovení HLA znaků asociovaných s chorobami workshop 2023



16/2/2023


HLA and KIR in reproduction

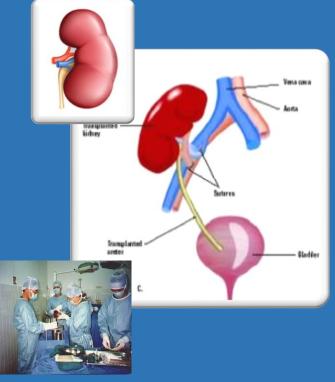
Theodora Keramitsoglou Dept of Immunology and Histocompatibility RSA outpatient Clinic "Helena Venizelou" Hospital, Athens Greece The fetus is a **Semiallograft** half of its antigenic make-up comes from the mother and half from the father

The maternal leukocytes are in continuous contact with the fetal tissues lining the maternal vessels of the deciduas and placenta

There are several sites and times at which the maternal immune system may be challenged with fetal/paternal alloantigens

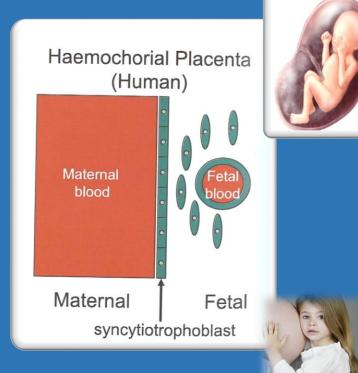
The maternal immune system does not reject the fetus

«How does the pregnant mother continue to nourish within herself for many weeks or months a foetus that is antigenically a foreign body?»



Sir Peter Medawar and Rupert Billingham

(1953)


The Immunological Paradox of Pregnancy

The embryo is not a transplant

- unnatural medical/therapeutical manipulation
- transplanted organ or tissues remain invariable regarding structure and genetic characteristics
- transplanted organ is directly exposed to the host/recipient blood circulation

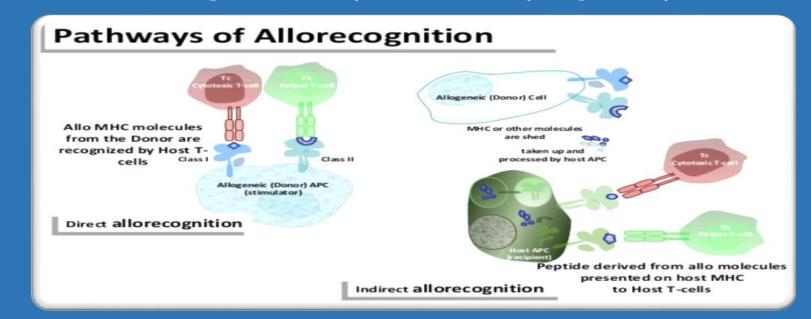
 host/recipient's organism is not naturally prepared to accept the graft

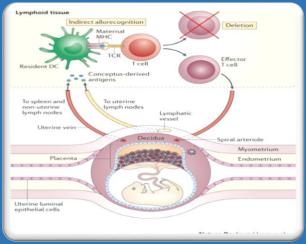
physiological procedure/function

embryo/fetus undergoes alterations

 mother and fetus blood do not mix and substances are exchanged through the placenta by diffusion ("hemochorial" placentation)

 maternal organism is prepared (hormone mediated changes) for blastocyst/embryo's implantation

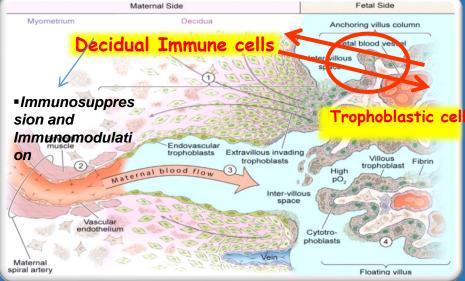

distinctiveness of fetal/maternal interactions


Allorecognition pathways

MHC and other molecules' expression in trophoblast

Phenotypical and functional characteristics of the decidual cells

The allorecognition pathways are different between Organ transplants and pregnancy



Unlike surgical organ transplants, the fetal 'allograft' is recognized by T cells exclusively via the **indirect allorecognition pathway** which is considered "minor"

NK cell-mediated allorecognition system in pregnancy

Fetal/maternal interface

The fetal-maternal interface is a unique microenvironment including three distinct components: >fetal-derived trophoblast, >maternal-derived decidual stromal cells, and >immune cells

The trophoblast is the site of fetal antigen expression

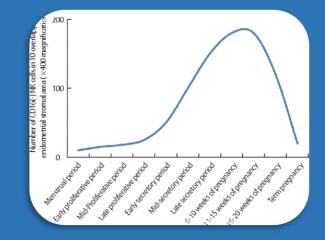
The maternal-fetal interface is the place of many complex connections between the mother's immune cells and the trophoblast cells

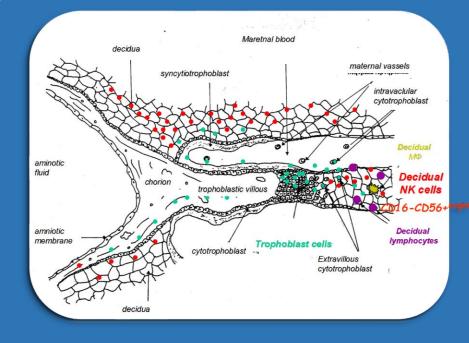
the establishment of immune tolerance

The unique expression of **HLA molecules** in trophoblasts and the interaction with their receptors in local immune cells are **key factors** for the establishment of immune tolerance

				Maternal Side	Fet
	cytotrop	ohoblast	cyncytiotr ophoblast	Myometrium Decidua	Anchoring Fetal blo MHC 12 Space
	villus	extra villus			
HLA-A, B,C		С			
HLA-G,E,F		G, E,F		Smooth muscle trophoblasts travillous invariant	ling and a state
HLA-DR, DQ, DP				2 Maternal blood flow 3	
MCP-CD46 (TLX)	+	+	+	Vascular endothelium	Ce
R 80 K	+	+	+		Cytotro- phoblasts
HLA Class I expressio	on: 7 th week of	fgestation		Maternal spiral artery	Flo

Only extravillous trophoblast cells express the non-polymorphic MHC class I molecules HLA-G (117 alleles), HLA-E (346 alleles) and HLA-F (59 alleles) and the more polymorphic HLA-C (7.672 alleles)

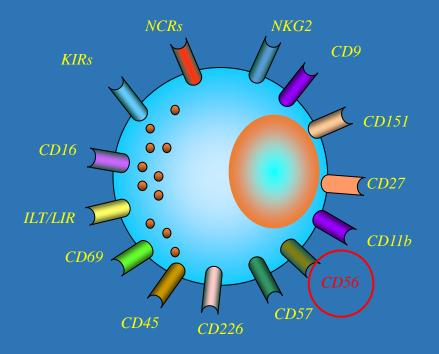

The Uterus is highly enriched in tissue-resident NK cells

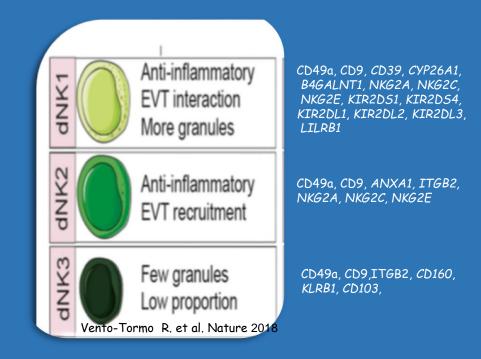


increase during the secretor phase when estrogens and progesterone prepare the endometrium for a prospective pregnancy

they are present at high frequencies in the decidua (dNK cells) from the implantation stage through the 1st trimester

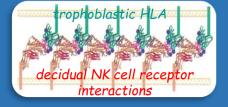
have direct contact with trophoblastic cells




dNK

hold unique phenotypic/functional properties

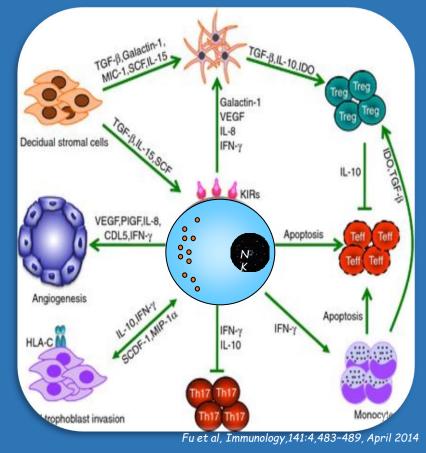
CD3- $CD16^{dim}CD56^{bright}$


three main dNK subsets

dNK

play a key immunomodulatory role in early pregnancy and they are important for the establishment of normal pregnancy

NK cell-mediated allorecognition system in pregnancy

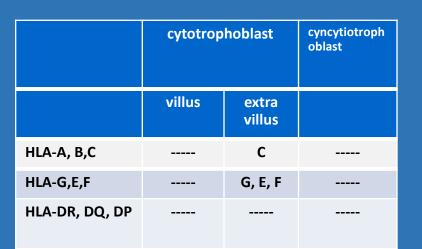

upon activation they produce: IFNy, perforin, angiogenetic factors, growth factors, Th2 cytokines

reg<mark>u</mark>late

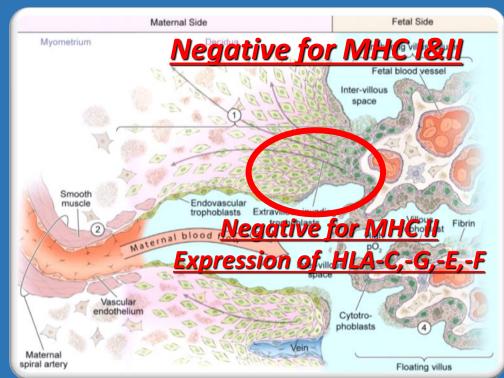
angiogenesis, uterine vascular remodelling, cell migration, trophoblast growth, differentiation, and invasion

although armed with both cytolytic mediators (perforin, fas/fas L) do not kill trophoblast

in excessive Th1 (infection, inflammation) they become activated and cytotoxic

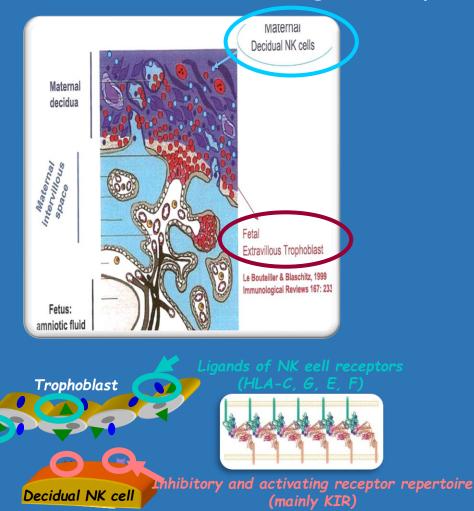


NK cell effector functions are regulated by the balance between activating and inhibitory signals transduced by


activating and inhibitory receptors

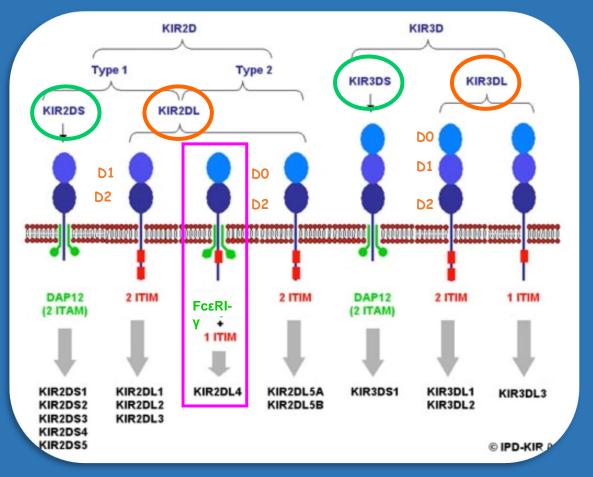
Family	Molecular structure	Receptors	Ligands
KIR	Immunoglobulin superfamily	KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, KIR3DS1, KIR2DL4, KIR2DL1, KIR2DL2 KIR2DL3, KIR2DL5A, KIR2DL5B, KIR3DL1, KIR3DL2, KIR3DL3	HLA-A,C, G, Bw4
NCR	Immunoglobulin superfamily	NKp44, NKp46, NKp30	Viral HA,
ILT/LILR	Immunoglobulin superfamily	LILR-1,2,3,4,5,6a,6b,7,8	HLA class Ia (-G)
CD94/NKG2	C-type lectins	NKG2A/B, NKG2C,NKG2F NKG2E, NKG2H	HLA class Ib (-E)
NKG2D	C-type lectins	NKG2D	MICA,MICB ULBPs

Through their **receptors**, dNK cells may recognize selected epitopes on HLA class I molecules expressed on invading trophoblast



HLA Class I expression: 7th week of gestation

HLA-C, HLA-G, HLA-E, HLA-F are the only HLA molecules expressed on extravillous trophoblast Among the different NK receptors' interactions with their specific counterparts on trophoblast, the interactions between

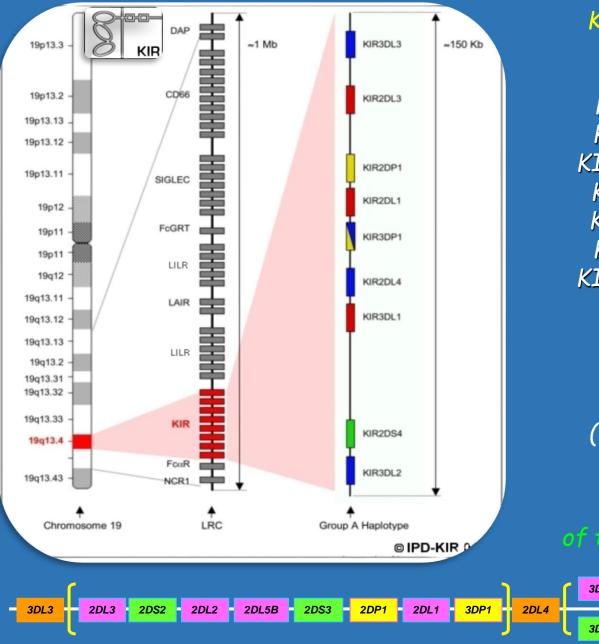

receptors of the KIR family and their ligands HLA-C molecules appear to be those mainly involved in the function of an NK cell-mediated allorecognition system in pregnancy

Given the differences in both the KIR repertoire and the HLA-C allotypes among unrelated individuals, **each pregnancy presents a different combination** of maternal KIR receptors on dNK and self and non-self HLA-C allotypes on trophoblast

This combination is expected to ensure the appropriate receptor-ligand interactions to favour pregnancy

Killer Immunoglobulin-like Receptors (KIR)

Both activating and inhibitory receptors may co-expressed in the same cell


Activating receptors are effective only in the absence of ihnibitory receptors' action

INHIBITORY receptors regulate NK activation/action

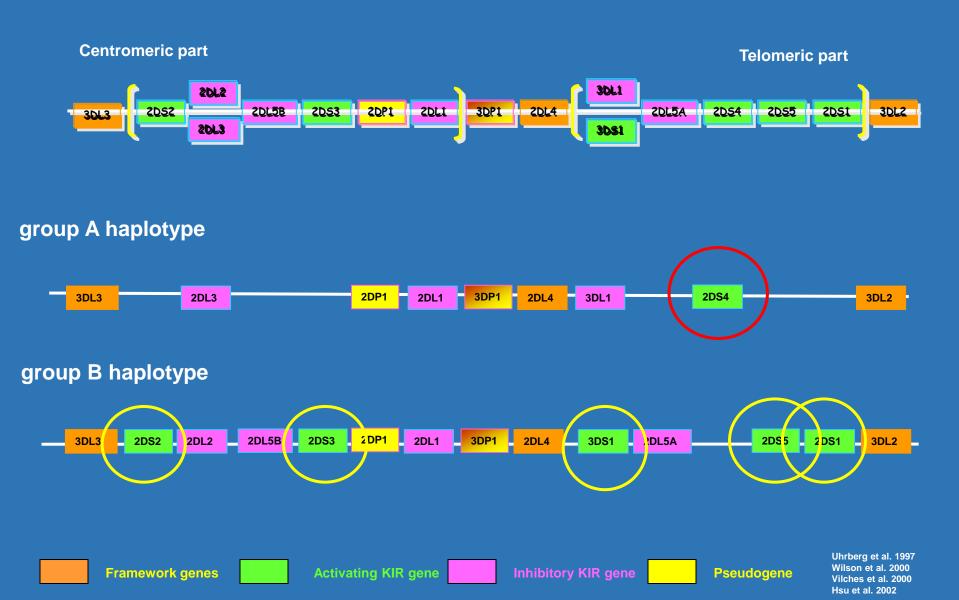
Transmembrane glycoproteins

Activating→short (S) cytoplasmic tail Inhibitory→long (L) cytoplasmic tail

KIR family consists of

15 genes

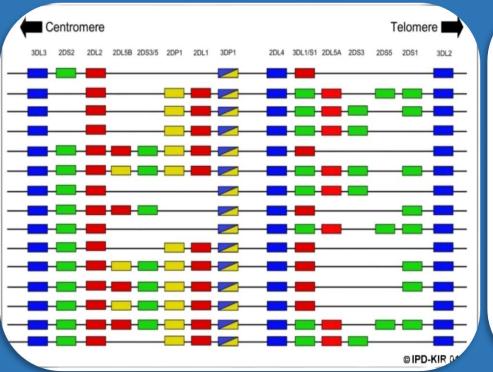
KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL4, KIR2DL5A, KIR2DL5B, KIR2D51, KIR2D52, KIR2D53, KIR2D54, KIR2D55, KIR3DL1, KIR3DL2, KIR3DL3 και KIR3DS1


2 pseudogenes (KIR2DP1 and KIR3DP1)

of the LRC (Leukocyte Receptor Complex)

organized in haplotypes

KIR genes are organised within the LRC into **haplotypes**, which have been shown to exhibit extensive variation in the number and type of KIR genes present



Within the human population, KIR haplotypes and genotypes differ in their gene content, and by allelic polymorphism at the individual KIR genes

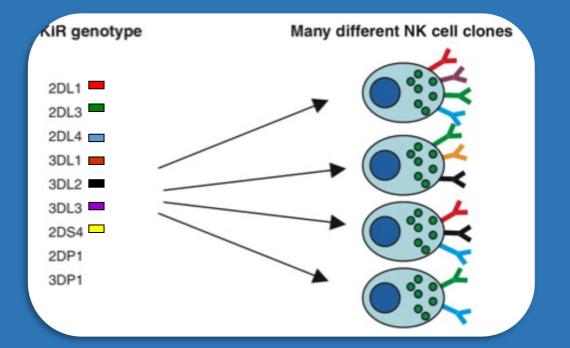
KIR GENE DIVERSITY

variable number of genes depending on KIR haplotype

KIR ALLELIC POLYMORPHISMS

	NERE			
3DL3	2DL3	2DP1 2DL1 3DP1	2DL4 3DL1	2D54 3DL2
	$\overline{\bigcup}$	\Box	$\overline{\bigcup}$	
# Haplotype 1	*004/005	*001	1001	*001/00
Haplotype 2	*004/005	*001	*002/003/006/007/008	*002
Haplotype 3	*004/005	*005	*002/003/006/007/008	*001/00
Haplotype 4	*002/006	*002	*001	*001/00
Haplotype 5	*002/006	*002	*002/003/006/007/008	*001/00
Haplotype 6	*002/006	*002	*002/003/006/007/008	*002
Haplotype 7	*002/006	*002	*002/003/006/007/008	*008
Haplotype 8	*002/006	*002	*004	*003
Haplotype 9	*002/006	*002	*004	*005
Haplotype 10	*002/006	*002	*005	*001/00
Haplotype 11	*001	*003	*001	*001/009
Haplotype 12	*001	*003	*002/003/006/007/008	*001/00
Haplotype 13	*001	*003	*002/003/006/007/008	*002
Haplotype 14	*001	*003	*002/003/006/007/008	*006
Haplotype 15	1001	*003	*002/003/006/007/008	*008
Haplotype 16	1001	*003	*002/003/006/007/008	*010
Haplotype 17	*001	*003	*004	*003
Haplotype 18	*001	*003	*004	*011
Haplotype 19	*001	*003	*004	*012
Haplotype 20	*001	*003	*005	*001/00
Haplotype 21	*001	*003	*005	*010
Haplotype 22	*006	*005	*004	*003

= Allelic variants and haplotype nomenclature of group A haplotypes according to Shilling et al, 2002


C IPD-KIR 01/08

KIR Expression In-

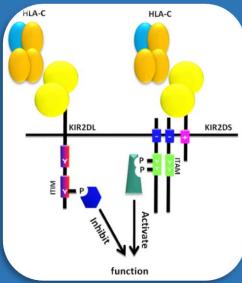
NK cells and subpopulations of T cells

Each NK cell clone of an individual does not express the entire set of KIR genes encoded in its genome

Possesses a diverse repertoire of NK cells with stochastically distributed KIR expression on their surface

Expression is under Transcriptional and post-transcriptional control and is influenced by the presence or absence of HLA ligand

KIR ligands


HLA class I molecules

KIR	Ligands
2DL1	HLA C2 group
2DL2,3	HLA C1 group
2D51	HLA C2 group
2D52	?
2D53,5	?
2D54	HLA-A*11 and some HLA-C1+C2, HLA-F
2DL4	HLA-G
2DL5	3
3DL1	HLA-Bw4
3DL2	HLA-A3, A11, HLA-F?
3D51	HLA-B (Bw4)?

 $\begin{array}{l} \text{KIR2DL1}, \\ \text{KIR2DS1} \end{array} \rightarrow \text{HLA-C2} \\ \text{KIR2DL2/3} \rightarrow \text{HLA-C1}, \\ \text{B*46:01}, 73:01 \\ \text{HLA-C2 low affinity} \end{array}$

KIR3DL1 → HLA-Bw4

HLA-C are the ligands for most of the KIRs

HLA-C Asn⁸⁰

HLA C1 group: C*01, C*03, C*07, C*08, C*12, C*13, C*14, C*16:01/4

HLA-C Lys⁸⁰

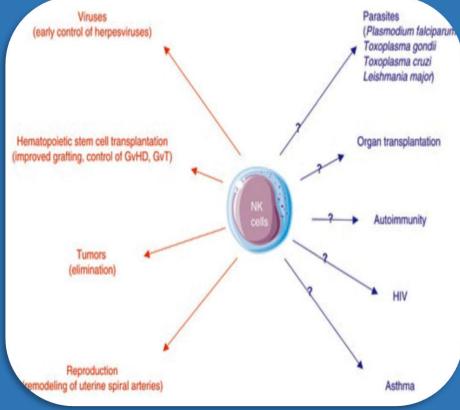
HLA C2 group: C*02, C*04, C*05, C*06, C*15, C*16:02, C*17, C*18

Hierarchy

The activating KIRs bind their ligands with lower affinity than that of inhibitory receptors

Inhibitory receptor	HLA–C ligand	Affinity of interaction	
KIR2DL1	Lysine 80	C2	Strong
KIR2DL2	Asparagine 80	C1	Intermediate
KIR2DL3	Asparagine 80	C1	Weak

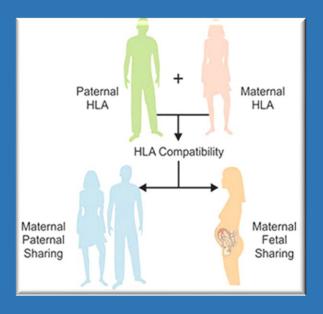
1	Functional KIR2DL- HLA-C pairs	Increasing activation
	2DL1-C2 (homozygous)	
	2DL1-C2 and 2DL2-C1	
	2DL1–C2 and 2DL3–C1	
	2DL2-C1 (homozygous)	
	2DL2-C1 and 2DL3-C1	
ncreasing nhibition	2DL3-C1 (homozygous)	Ļ

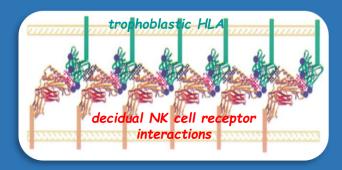

Nature Reviews | Immunology

P. Parham, Nat Rev Immunol 2005

KIR2DL2- HLA-C2 weakly KIR2DS1-HLA-C2

KIR / HLA-C interactions seem to play a role in

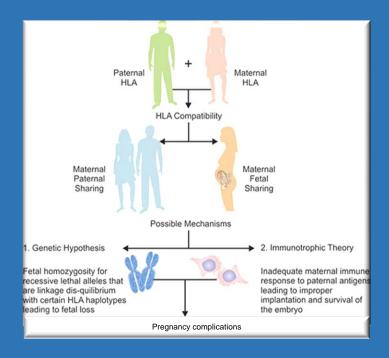

Infectious diseases Autoimmune/inflammatory disorders Cancer and alloimmune responses such as Transplantation and **Reproduction**



HLA involvement in reproductive success

Specific HLA antigens/alleles HLA couple sharing HLA mother-fetus sharing

HLA-C/KIR interactions



Have been associated with pregnancy outcome and risk of complications

The genetic hypothesis

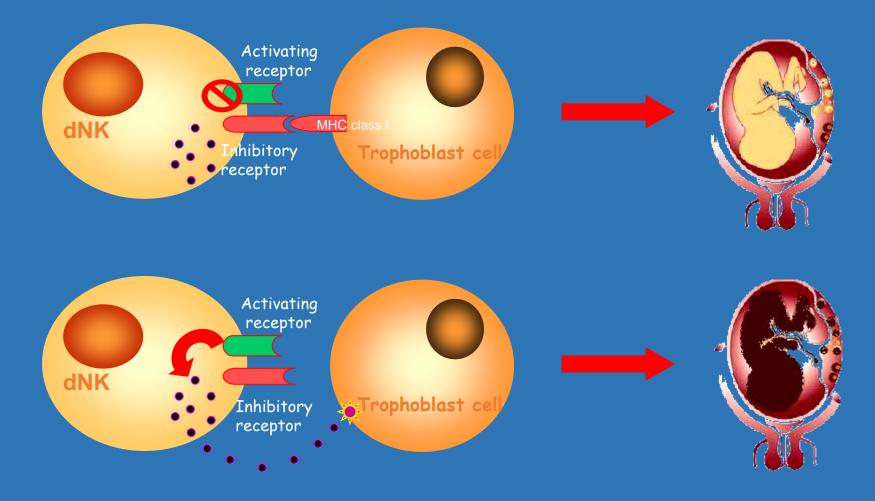
Reproductive failure is due to homozygosity for recessive lethal alleles that are in linkage disequilibrium with specific HLA haplotypes

The immunological hypothesis

HLA Compatible embryo

Insufficient antigenic stimulus for maternal response to enhance pregnancy

HLA Incompatible embryo


Sufficient antigenic stimulus for maternal response to enhance pregnancy

KIR/HLA-C allorecognition system in pregnancy

(Varla-Leftherioti, 2004)

Hypothesis:

If trophoblastic HLA molecules are not recognized by dNK cell appropriate receptors, the functions of the NK cells can be detrimental for trophoblast

HLA involvement in reproductive success

HLA sharing story

'70s

Increased HLA sharing in couples with recurrent spontaneous abortions (RSA) Komlos L et al, 1977

large number of studies with controversial results

Kolmos et al	1977
Gerenceret al	1978
Reznikoff-Etievant	et al 1984
Unander et al	1983
 Aruna et al.	2011
Thomsen et al.	2021

Kwak-Kim et al 1990

Kwak et al 1991 Ober et al 1991,1993

DOA1 **DOA1*0505**

Oskenberg et al Mowbray et al Thomas et al Christiansen et al

1985 1989

1983

1983

11th IHWC (Yokohama 1991) 13th IHWC (Victoria 2001) 14th IHWC (Melbourne 2005) 15th IHWC (Bouzios 2008)

Weckstein LN et al , 1991 Matsuyama T, et al , 1992 Balasch J, et al, 1993 Carp et al, 1994

Ho HN, et al, 1994 Creus M. et al. 1998

* Ober C, et al, 1993

* Jin K, et al , 1995

* DQA1*05:05 sharing HLA- C group sharing

Martin-Villa JM, et al., 1993

* Check JH, et al, 2001

HLA in RIF

HLA in RM

Increased DQA1*05:05 sharing in RM couples with women having autoimmune disturbances

		Ке	ramitsoglou et al., 2004 (86 RSA couples)		кі га B1* ty		Cont	rois P	ILA-A	", -в",	-C ¹¹ , -l
IHWG	Controls	6/36 16.6%			0	1	2	3	4	5	6
Histocompatibility Working Group	Auto RPL	14/58 24.3%		Controls IVF	12.9 18.7	22.5 31.2	22.5 25	22.5 6.25	16.2 6.25	3.2 6.25	3.2 6.25
14° ihives			Varla-Leftherioti M et al 2007 (108 RSA couples)								
	Controls	48/182 26.37%				D	Q	41	~0	5:(J 5
	Auto RPL	16/68 24,6%		Γ	Contro	ols	5	i,5%			o of
			eftherioti M et al 2010. 185 RSA couples)	-							o of I: 57

DQA1*05:05 sharing does not characterize neither allo- nor autoimmune aborters

In RIF couples no difference were found in allele sharing between partners compared to the controls

31 RIF and 31 Controls HLA-A*, -B*, -C*, -DRB1*, -DQA1*, -

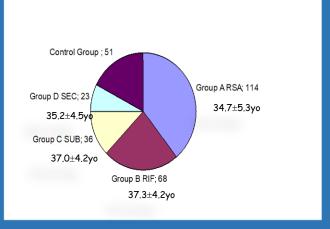
	0	1	2	3	4	5	6	7	8	9	10- 12	≥3
Controls	12.9	22.5	22.5	22.5	16.2	3.2	3.2					45%
IVF	18.7	31.2	25	6.25	6.25	6.25	6.25					25%

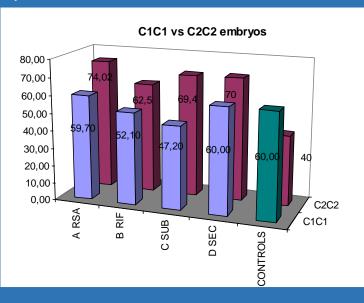
Controls	5,5%
RIF	10%

No of failures: all: 5.7 DQ compatible: 7.6

HLA-C

HLA and KIR typing in couples with subfertility problems Th. Keramitsoglou, Ch. Tsekoura, B. Geladakis, M. Varla-Leftherioti LISBON EFI 2019


260 subfertile couples



Embryos with estimated HLA-C2C2 homozygocity clearly predominated over HLA-C1C1 embryos in all patients' groups

RSA:C1C1 59.7% vs C2C2 74.02%, RIF:52.1% vs 62.5%, SUB:47.2% vs 69.4%, SEC:60% vs 70%,

but not in the group of fertile couples (C1C1: 60% vs C2C2 40%)

		Uncomplicated (n=451)										
		Observe er of ma	-	(numb	P-value*							
	1	2		1	2							
HLA-A	86.0%	14.0%		88.2%	11.8%		0.244					
HLA-B	91.6%	8.4%		92.9%	7.1%		0.271					
HLA-C	85.8%	14.2%		86.9%	13.1%		0.485					
HLA-DRB1	88.2%	11.8%		90.7%	9.3%		0.075					
HLA-DQB1	81.4%	18.6%		83.1%	16.9%		0.314					
Class I	3	>3		3	>3							
	74%	25.9%		73.9%	26.1%		0.915					
Class II	2	>2		2	>2							
	78.7%	21.3%		79.4%	20.6%		0.727					
Total	5	6	>6	5	6	>6						
	59.2%	25.1%	15.7%	59.2%	27.7%	13.1%	0.166					

			Pree	clampsi	a (n=77)			P-value*
	manner of St	Observed (number of matches)		Expected (number of matches)			P-value*	Uncomplicated vs Preeclampsia (observed only)
	1	2		1	2			
HLA-A	85.7%	14.3%		88.3%	11.7%		1.000	1.000
HLA-B	87.0%	13.0%		93.5%	6.5%		0.098	0.097
HLA-C	77.9%	22.1%		89.6%	10.4%		0.007	0.025
HLA-DRB1	87.0%	13.0%		93.5%	6.5%		0.326	0.710
HLA-DQB1	77.9%	22.1%		84.4%	15.6%		1.000	0.382
Class I	3	>3		3	>3			
	64.9%	35.1%		75.3%	24.7%		0.240	0.038
Class II	2	>2		2	>2			
	75.3%	24.7%		81.8%	18.2%		1.000	0.366
Total	5	6	>6	5	6	>6		
	48.0%	27.3%	24.7%	63.6%	24.7%	11.7%	0.012	0.021

Preeclamptic pregnancies show a tendency of higher maternal-fetal HLA-C, HLA class I, and total HLA matching, compared to uncomplicated pregnancies

> van 't Hof LJ, et al. Maternal-Fetal HLA Compatibility in Uncomplicated and Preeclamptic Naturally Conceived Pregnancies. Front. Immunol. 12:673131 (2021)

Specific HLA antigens/alleles

In a recent large case-control study it was found that the HLA-DRB1*07 allele was highly significantly associated to RM

Table 1

Frequencies of HLA-DRB1 alleles in recurrent pregnancy loss (RPL) patients and bone marrow donor controls.

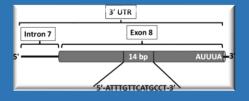
HLA- DRB1*	RPL (n = 2156)	controls (n – 4132)	OR (95 % CI)	P; Pc
01	10.76	11.08	0.97 (0.82-1.14)	0.7
03	13.08	13.53	0.96 (0.83-1.12)	0.6
04	17.16	16.36	1.06 (0.92-1.22)	0.4
07	12.29	9.80	1.29 (1.09-1.52)	< 0.0025; 0.03
08	3.15	3.75	0.84 (0.63-1.12)	0.2
09	1.07	0.85	1.26 (0.74-2.14)	0.4
10	0.70	0.56	1.25 (0.65-2.40)	0.5
11	7.42	6.97	1.07	0.5
12	2.46	2.54	0.97	0.8
13	12.76	13.75	0.92	0.3
14	2.27	2.23	1.02 (0.72-1.45)	0.9
15	16.14	17.52	0.91	0.2
16	0.83	1.06	0.78	0.4

Thomsen C.K. et al. Journal of Reproductive Immunology 145 (2021)

1078 Caucasian women with RM 2066 controls

HLA class II characteristics Sex of child born prior to the miscarriages Chance of live birth $o^{*} n = 166$ $Q_n = 120$ o' compared with 9 prior to miscarriages Total Live birth Live birth OR* 95% CI P-value Total % % n n n n HLA-DRB1*15 50 22 44 35 29 83 0.16 0.06 - 0.460.001 HLA-DQB1*0501/0502 38 15 40 24 20 84 0.14 0.04 - 0.500.003 86 HLA-DOB1*0503 10 8 80 7 6 0.35 0.02 - 7.90.513 56 13 85 HLA DRB3*0301 9 5 11 0.23 0.03 - 1.680.14 HY-restricting HLA class II 89 39 44 62 51 82 0.17 0.08 - 0.390.0001 77 51 58 No HY-restricting HLA class II 0.90 0.42 - 1.870.76 *Adjusted for number of previous miscarriages.

Table 2. Impact of maternal HY-restricting HLA class II alleles on the chance of a subsequent live birth in secondary recurrent miscarriage patients


A prospective study (n=358) provided evidence that women with secondary RM after the birth of a boy have a significantly lower (22%) subsequent live birth rate when they carried one of DRB1*15:01; -DQB1*05:01/05:02 and -DRB3*03:01 alleles, known to predispose to clinically relevant anti-HY immune reactions

Nielsen HS, et al. Hum Mol Genet (2009)

Abnormal sHLA-G expression and HLA-G polymorphisms are associated with pregnancy complications such as preeclampsia, recurrent miscarriage (RM), and recurrent implantation failure (RIF)

HLA-G 14-bp insertion/deletion polymorphic variation was associated with RM risk in patients with three or more miscarriages

Fan, W., Li, S., Huang, Z. et al. J Assist Reprod Genet (2014).

The presence of sHLA-G in the embryo culture medium favored higher implantation rate and pregnancy rate

Ziru Niu et al. Reproductive BioMedicine Online (2017)

 HLA-G 14bp ins/ins homozygous genotype or ins variant was associated with a higher risk of RIF in the Caucasian population

•The maternal HLA-G*010101 and paternal HLA-G*010102 alleles are associated with RIF risk compared to other alleles

Hu L, et al. Front, Immunol (2022)

Table 1 HLA associations in RM.

17 Yan et al. [47]

18 Yan et al. [47]

19

20

Abbas et al. [66]

Tripathi et al. [67]

21 Pfeiffer et al. [15]

Author		Study Design	Cases		Control subjects		Ethnicity	HLA biomarker	Study findings
			N	Definition	N	Definition			Significant
Class	sical HLA I								
1	Faridi et al. [8]	Case control	177	≥3 PRM	200	≥2 uncomplicated live births	Ethnically matched	C1, C2 alleles in couples (allelic)	-
2	Hiby et al. [10]	Case control	162	>3 PRM, first (92%) and second trimester, same partner	269	1 live birth	NR	C1, C2 alleles in couples (allelic)	C2
3	Christiansen et al. [61]	Case control	70	>3 RM (20 PRM, 15 SRM), before 28th gestational week	60	≥2 live births	Caucasian	C1, C2 alleles in couples (phenotypic)	
Class	sical HLA II								
4	Aruna et al. [6]	Case control	56	143 couples with ≥ 2 RM (130 PRM, 13 SRM) and 56 couples with ≥ 3 RM	140	≥ 1 live birth	Ethnically matched	DRB1, DQA, DQB (allelic)	DQB1*03:03:02* DQB1*03:03:031b
5	Kruse et al. [5] (study II)	Case control	354	≥3 RM (212 PRM, 142 SRM), 20-45 years	202	≥1 live birth	Caucasian	DRB1, DQA1, DQB1 (phenotypic)	DRB1*04 ^b , DRB1*13 ^b , DRB1*14 ^b , DQA1*01:03 ^b , DQB1*03:02 ^b , DQB1*06:03/06:04 ^b (study II)
6	Takakuwa et al. [65]	Case control	93	≥3 RM (79 PRM, 14 SRM) first trimester, same partner	115	≥2 term deliveries	Japanese	DRB1 (phenotypic)	DRB1*15:02
7	Sasaki et al [57]	Case control	27	≥3 RM, first trimester	22	$\geqslant 2$ term deliveries	NR	DRB1 (phenotypic)	DRB1*04
8	Takakuwa et al. [60]	Case control	30	≥3 PRM, first trimester, same partner	30	≥2 term deliveries		(phenotypic)	DPB*04 ^b , DPB*04:02 ^b
9	Bellingard et al. [62]	Case control	10	≥3 PRM, mean age 33.9 years	21	$\geqslant 2$ live births	NR	DRB1 (allelic and phenotypic)	-
10	Dizon-Townson et al. [45]	Case control	51	≥3 RM, consecutive	43	≥7 live births	Caucasian	DQA1 (allelic)	-
11	Takakuwa et al. [63]	Case control	22	≥3 RM, same partner, first trimester	20	≥2 term deliveries	NR	DQB1 (allelic and phenotypic)	-
Non	-classical HLA II								
12	Christiansen et al. [16]	Case control	339	≥3 RM (154 PRM, 185 SRM), median age at referral 32-33 years	125	≥2 uncomplicated live births	NR	HLA-G (exon 8)	G14 bp ins/ins
13	Vargas et al. [14]	Case control (matched age, socioeconomic)	60	≥3 PRM (dinically verified), before 20th gestational week, same partner, mean age at miscarriage 26.4 years	68	≥2 live births	Ethno- geographically matched	HLA-G (exon 2, 3, 8) (allelic)	HLA-G 01:01A1
14	Zhu et al. [46]	Case control	51	≥3 RM	251	≥1 live birth	NR	HLA-G (exon 8)	-
15	Suryanarayana et al [51]	Case control	169	≥3 PRM, first trimester		>1 uncomplicated		HLA-G (exon 2	-
16	Xue et al. [17]	Case control	24	≥3 RM		<u> </u>			stematic review

Although the present systematic review and meta-analysis demonstrates that specific HLA alleles and HLA sharing are associated with RM, a high degree of bias was present and therefore observed results should be interpreted carefully

79 ≥3 RM

69 ≥3 RM

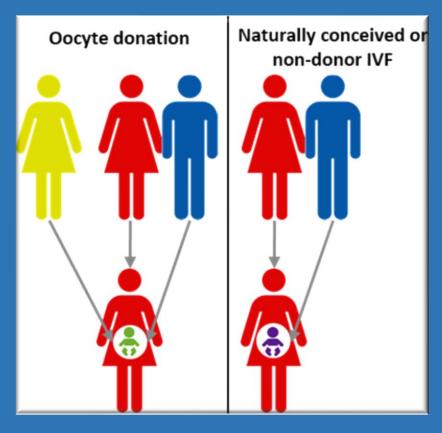
120 >3 PRM

120 ≥3 PRM

42 years

78 >3 RM (56 PRM, 22 SRM), same parti

Case control


Case control

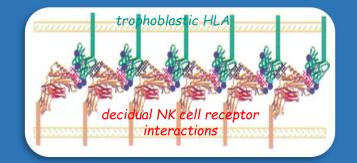
Case control

Case control

Case control

366

In Oocyte Donation pregnancy, the fetus may be completely allogeneic to the mother


Possibly, the allogeneic nature of the fetus in OD pregnancies plays a role in the development of pregnancy complications, such as

> premature birth, low birthweight, bleeding complications, and hypertensive disorders

A significant higher level of HLA matching between mother and child in successful and uncomplicated OD pregnancies than expected by chance Lashley et al. Journal of Reproductive Immunology (2015)

A higher number of HLA class II mismatches, and specifically HLA-DR mismatches, is associated with a higher chance of developing preeclampsia in OD pregnancies van Bentem K. Journal of Reproductive Immunology (2019)

HLA-C/KIR interactions

The first positive association of recurrent miscarriages with KIR repertoire was presented by Varla-Leftherioti et al

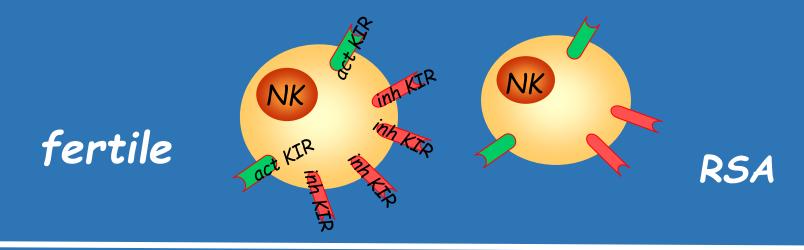
KIR and CD94/NKG in fertile and alloRSA couples

(Varla-Leftherioti et al, Am J Reprod Immunol 2003:49:183-91)

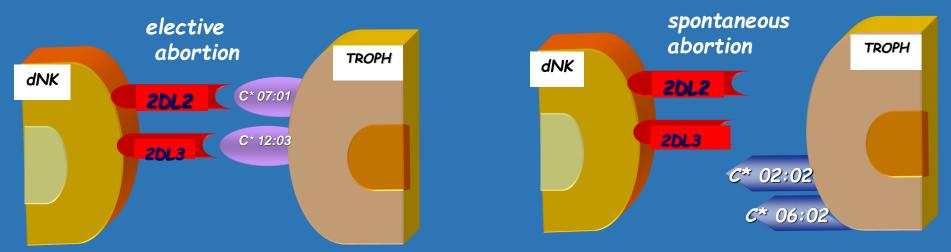
Studies of association between KIR and KIR/HLA-C combinations and RM are conflicting

J Assist Reprod Genet

 Table 1
 Basic research studies showing the associations between KIR and HLA and recurrent miscarriage


Reference	KIR (and HLA) implicated	Type of experiment/objective	Conclusions		
[40]	Inhibitory KIRs (2DL1, 2DL2, and 2DL3)	26 childless couples with ≥ 2 abortions and 26 control couples. KIR genotyping	Some alloimmune abortions may occur when the MHC class I molecules on trophoblasts are recognized by decidual NK cells lacking appropriate inhibitory KIR receptors that would stop activating signals.		
[41]	No association	51 women with unexplained recurrent spontaneous abortions consecutively referred/55 controls. KIR genotyping.	The data provide little evidence that KIR polymorphism plays a role in predisposition to recurrent spontaneous abortions.		
[42]	Inhibitory KIRs (in particular 2DL2)	Cohort of 30 fertile couples (without previous abortions)/139 healthy controls/88 couples with \geq 3 recurrent spontaneous abortions. KIR genotyping	The balance between inhibitory and activating receptors present in natural killer cells is incline toward an activating state that may contribute to pregnancy loss.		
[43]	Activating KIRs (in particular 2DS1). KIR2DS1 in the absence of KIR2DL1/HLA-C2.	73 pairs of childless couples with ≥3 abortions characterized as unexplained and 68 pairs of healthy control couples. KIR genotyping and HLA-C groups C1/C2 identification.	A decrease in the ligands for inhibitory KIRs could potentially lower the threshold for NK cell activation, mediated through activating receptors, thereby contributing to the pathogenesis of recurrent spontaneous abortion.		
[44]	KIR2DS1	Male $(n = 67)$ and female $(n = 95)$ partners of couples with ≥ 3 spontaneous miscarriages/269 controls (women primiparae, no miscarriages, or ectopic pregnancies). KIR genotyping and HLA-C groups' identification.	The findings support the idea that successful placentation depends on the correct balance of uNK cell inhibition and activation in response to trophoblasts.		
[45]	Activating KIRs	68 patient couples with recurrent miscarriage and 68 control fertile couples. KIR genotyping	Recurrent miscarriage could be associated with NH cell activation mediated by a profile rich in activating KIR genes.		
[46]	KIR2DL1/HLA-C2 KIR2DS2/HLA-C1	177 couples with recurrent miscarriages (primary aborters, no live births) and 200 healthy couples (at least two live births and with no history of miscarriage, preeclampsia, ectopic pregnancy, or preterm delivery). Maternal KIR gene content and HLA-C genotypes to allele level in couples experiencing recurrent miscarriage and controls.	The activation spectrum of KIR-HLA-C compound genotype for NK cells may contribute to the immunological etiology of recurrent miscarriage.		
[47]	Activating KIRs	40 women with unexplained recurrent miscarriage and 90 controls. KIR genotyping.	Shifted balance of KIRs toward an activating state in NK cells may contribute to recurrent miscarriage.		
[48]	Inhibitory KIRs	Retrospective study that included 291 women, with recurrent miscarriages or recurrent implantation failure, who had a total of 1304 assisted reproductive cycles. KIR genotyping.	These new insights could have an impact on the selection of single embryo transfer in patients with miscarriages or recurrent implantation failure, and with a KIR AA haplotype.		
[49]	KIR2DS1/HLA-C2	The frequencies of KIR and HLA-C1 and HLA-C2 genes were evaluated in 139 women with \geq 2 consecutive spontaneous pregnancy losses.	KIR and HLA-C genotyping is important for predicting immune-related problems in women with recurrent pregnancy loss women.		

- Varla-Leftherioti M, Spyropoulou-Vlachou M, Niokou D, Keramitsoglou T, Darlamitsou A, Tsekoura C, et al. Natural killer (NK) cell receptors' repertoire in couples with recurrent spontaneous abortions. Am J Reprod Immunol. 2003;49:183–91 Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd= Retrieve&db=PubMed&dopt=Citation&list_uids=12797525.
- Witt CS, Goodridge J, Gerbase-DeLima MG, Daher S, Christiansen FT. Maternal KIR repertoire is not associated with recurrent spontaneous abortion. Hum Reprod. 2004;19:2653–7.
- Flores AC, Marcos CY, Paladino N, Arruvito L, Williams F, Middleton D, et al. KIR receptors and HLA-C in the maintenance of pregnancy. Tissue Antigens. 2007;69(Suppl 1):112–3.
- Wang S, Zhao YR, Jiao YL, Wang LC, Li JF, Cui B, et al. Increased activating killer immunoglobulin-like receptor genes and decreased specific HLA-C alleles in couples with recurrent spontaneous abortion. Biochem Biophys Res Commun. 2007;360:696–701.
- Hiby SE, Regan L, Lo W, Farrell L, Carrington M, Moffett A. Association of maternal killer-cell immunoglobulin-like receptors and parental HLA-C genotypes with recurrent miscarriage. Hum Reprod. 2008;23:972–6.
- Vargas RG, Bompeixe EP, França PP, Marques de Moraes M, da Graça Bicalho M. Activating killer cell immunoglobulin-like receptor genes' association with recurrent miscarriage. Am J Reprod Immunol. 2009;62:34–43 Available from: http://www.ncbi.nlm. nih.gov/pubmed/19527230.
- Faridi RM, Agrawal S. Killer immunoglobulin-like receptors (KIRs) and HLA-C allorecognition patterns implicative of dominant activation of natural killer cells contribute to recurrent miscarriages. Hum Reprod. 2011;26:491–7.
- Ozturk OG, Sahin G, Karacor EDZ, Kucukgoz U. Evaluation of KIR genes in recurrent miscarriage. J Assist Reprod Genet. 2012;29:933–8.
- Alecsandru D, Garrido N, Vicario JL, Barrio A, Aparicio P, Requena A, et al. Maternal KIR haplotype influences live birth rate after double embryo transfer in IVF cycles in patients with recurrent miscarriages and implantation failure. Hum Reprod. 2014;29: 2637–43.
- Dambaeva SV, Lee DH, Sung N, Chen CY, Bao S, Gilman-Sachs A, et al. Recurrent pregnancy loss in women with killer cell immunoglobulin-like receptor KIR2DS1 is associated with an increased HLA-C2 allelic frequency. Am J Reprod Immunol. 2016;75:94–103.


<u>Díaz-Peña R</u> Assist Reprod Genet. 2019 May;36(5):827-835

women with unexplained RM have a limited inhKIR repertoire

Varla-Leftherioti et al, Am J Reprod Immunol (2003)

in some cases of spontaneous abortions, maternal inhKIRs do not find their specific HLA-C ligands on trophoblast (epitope mismatch)

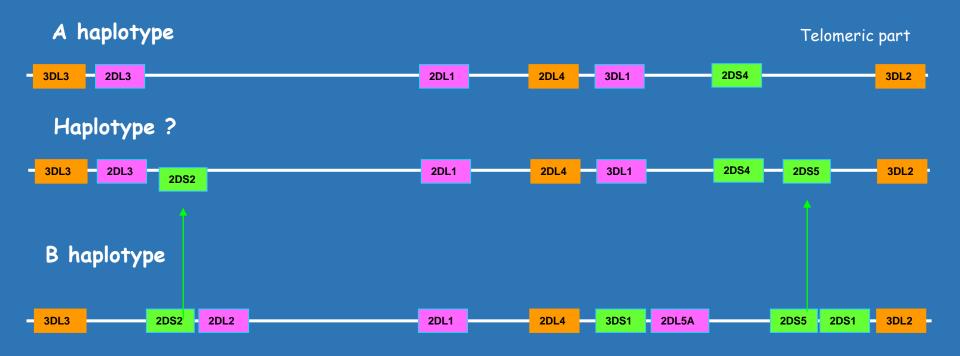
Varla-Leftherioti et al, Hum Immunol 2005;66:65-71

inhKIR/actKIR

Aborters (allo) 1.9 RIF 1.9 Fertile 2.6

an imbalance in favour of activating KIRs

and/or


lack of specific inhKIR/HLA-C interactions in the presence of specific actKIR/HLA-C interactions

Varla-Leftherioti et al Tissue Antigens 2010

RM and RIF

women with alloimmune RM possess the standard receptors of the KIR A haplotype combined with extra activating KIR/s of the haplotype B

D6.17 Maternal KIR repertoire and KIR/HLA-C recognition model in early pregnancy and implantation failure **(Teams 1b, 21)**

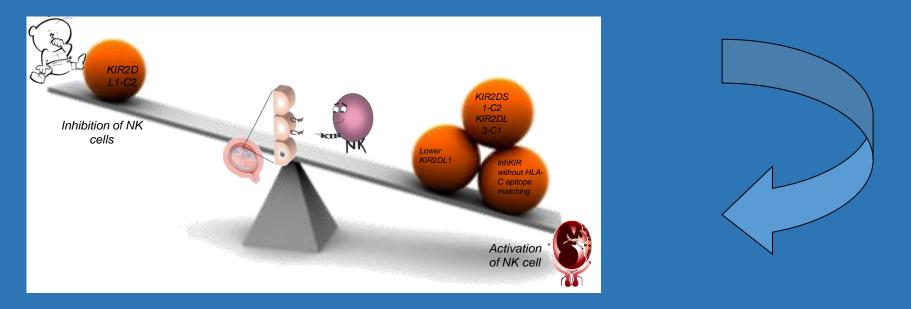
All subjects were treated in Obstetrics and Gynecology Departments of "Helena Venizelou" Maternity Hospital and written informed consent to participate in the study was obtained. All study participants were Caucasian.

the distribution of inhKIR receptors and inhKIR/HLA-C combinations at the feto-maternal interface by direct genotyping of trophoblastic cells

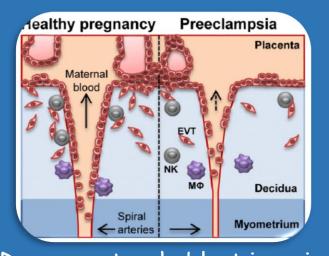
cases of women who were undergoing vacuum uterine curettage for therapeutic termination of first trimester missed pregnancy or elective termination of normal pregnancy

	RM	Controls
Decreased KIR2DL1 (strong inhKIR)	+	-
Limited inhKIR repertoire	+	-
KIR2DL3-C1 Weak inhibition	÷	-
KIR2DL1-C2 Strong inhibition	-	+
Embryo's C1C1	21,4%	35,3%
Embryo's C2C2	23,8%	27,5%

The results support the hypothesis that if trophoblastic HLA molecules are not recognized by dNK cell inhibitory receptors, the activation of NK cells is not inhibited and they attack trophoblast



women with unexplained RM or RIF


have a limited inhKIR repertoire

lack of maternal inhKIR/fetal HLA-C epitope matching

may give to aborters a higher potential for dNK cell activation, thus an increased risk for an adverse reproductive outcome

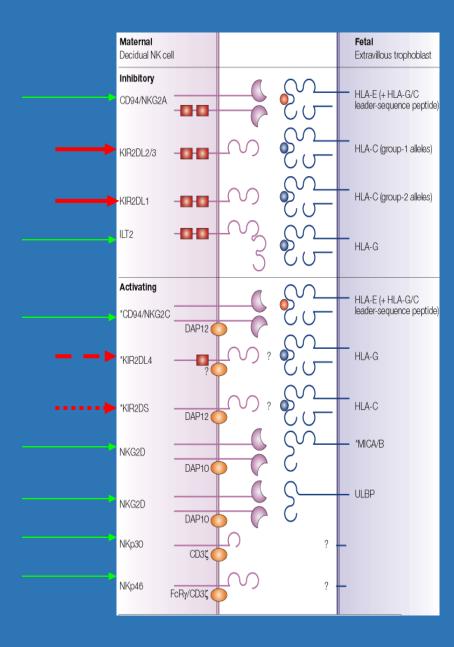
Preeclampsia

Decrease trophoblast invasion and size of spiral arteries

>In women with KIR AA haplotype there is an increased prevalence of preeclampsia

> Prevalence entirely due to pregnancies where the fetus genotype is either homozygous C2 or heterozygous C1C2

Hiby et al, J Exp Med (2004)


> KIR2DL1A, not KIR2DL1B, associates with increased risk of preeclampsia

Huhn O. J Immunol. (2018)

Severe preeclampsia

no influence of HLA-C/KIR genetic variation <u>Larsen TG-Placenta (2019)</u> Can the detection of KIR/HLA-C combinations be applied in practice to diagnose the reason of abortion or preeclampsia? The evaluation of KIR-HLA interactions is difficult Same cell may co-express both activating and inhibitory KIRs Different activating and inhibitory KIRs may have the same MHC ligand Receptors of other families may also be expressed on the same cell KIRs are expressed not only on NK but T subsets as well The ligands of most activating KIRs are unknown Different KIRs bind their receptors with different strength Particular inhKIR-C interactions provide different degree of inhibition Particular actKIR-C alleles are associated with more responsive NKs

The final NK cell action is the result of cumulative interactions of different maternal ihn and act receptors with different self and non-self trophoblastic molecules

Recommendation

RM

(maternal)

KIR and HLA-C

HLA-G

women

Significant but

weak Controversia

evidence

born boy

No data

No data

able 1 - A summary of all evidence-based diagnostic tests regarding the evaluation of RPL according to ESHRE (2017) and ASRM (2013) guidelines.			
	ASRM guidelines	ESHRE guidelines	
Infectious causes	Not recommended	Not recommended	
Male Factors (Sperm DNA fragmentation)	Not recommended	Not recommended	
Allo-Immune factors (HLA, anti-HY, cytokine and natural killer testing)	Not recommended	Not recommended	
nearm benavior modulcations (robacco use, alconor use, obesity)	History recommended	History recommended	

Abbreviations: LA, lupus anticoagulant; aCL, anticardiolipin; apJCP1, anti-\$2-glycoprotein 1; HLA, human leukocyte antigens; HSG, hysterosalpingogram; SHG, sonohysterogram; TPO-Ab, thyroid peroxidase antibodies; TSH, thyroid stimulating hormone; GGH, comparative genomic hybridization; PCOS, polycystic ovary syndrome.

Table 2. Summary of	evidence for investigations into RIF.	
Immunological disorders and thrombophilia	Uterine natural killer cells Peripheral natural killer cells Endometrial cytokines Genital microbiome Peripheral blood cytokines HLA incompatibility	Yello Red Red Red Red
Endocrine factors	Inherited thrombophilia Antiphospholipid antibody syndrome Thyroid function test Thyroid antibody testing	Red Yellow <mark>Green</mark> Yellow

			asso the t	ere evidence of ar ciation between est result and arriage?	 Is there evid the associat contributory miscarriage 	ion is y to	Is there evidence that the test result has prognostic value?	Is there evidence that treatment based on test results improves outcomes?
compat human	e testing (human leu ibility, human leukoo leukocyte antigen-G te antigen-C, cytokir	cyte antigen class , KIR and human		data	Little data		No data	No data
Anti-HY	/ immunity		Mod	erate	Yes		Yes	No data
Antinuc	Intinuclear antibodies		Voe		Little data		Inclear	No data
Ho syr	[53]						ło	Possibly (metformin treatment)
Vit –	Recommendation (updated in 2022)				shre	ittle data	No data	
Sn	Human Leukocyte Antigen (HLA) determination in women with RPL is not recommended in clinical practice. Only HLA				SCIENCE MOVING PEOPLE MOVING SCIENCE	Inclear	No	
ua	lass II determinati HLA-DQB1*05:01/0	•		considered in Conditional BBOO		Loss. ² KIR=killer imm		unoglobulin-like receptor.
ab s	candinavian wom	en with second	ary RPL after t					
a	boy, for explanate	ory and progno:	stic purposes.					
Ju	stification							
		Association	Contributing factor	Prognosis	Treatment			
H	ILA-compatibility	Controversial evidence	NA	No prognostic potential	NA	2021		
н	HLA class II: HLA-DR and HLA-DQ maternal)	Strong, but only shown in Scandinavian	YES, especially for secondary RPL after first	Negative impact on future live birth	None available	Update 2021		

birth

No data

No data

NA

NA

HLA determination in women with RM is not recommended

KIR or KIR/HLA-C typing is not suitable for diagnostic and therapeutic purposes at present Use of KIR and HLA C genotyping Selection of gametes from donor with specific genotypes

Improve the probability of a successful pregnancy

A strikingly lower miscarriage rate was reported in women with KIR-A with partners carrying HLA-C2, who were given either eggs from donors with unknown HLA-C status, or donors known to be HLA-C1C1

> Alecsandru D, et al. Maternal killer-cell immunoglobulin-like receptor (KIR) and fetal HLA-C compatibility in ART-oocyte donor influences live birth rate. 2016

Another group given egg from donors known to be HLA-C2C2 (potentially detrimental) were given 'rescue' medical intervention with the immune 'activating' hormone G-CSF. And that strategy was also shown to produce higher live birth rates than those given random egg donors

> Cruz M, et al. Use of granulocyte colonystimulating factor in ART treatment does not increase the risk of adverse perinatal outcomes. Reprod Biomed Online. 2019

Genetic testing for KIR/HLA-C implies that different immune therapies and strategies may be best for particular couples

If a woman is known to be KIR-A (with inhibitory NK receptors), immune suppressive therapy may be detrimental and contraindicated

If a woman is KIR-B (with activating receptors), empirical immune suppression might be worth trying.

Couples with KIRA/HLA-C2 may be more effectively treated with immune activators such as G-CSF, or even the endometrial scratch

Achilli C, et al. Fertil Steril. 2018

More studies are needed

Acknowledgements

Dept of Immunology and Histocompatibility

RSA Clinic

M. Varla-Leftherioti Ch. Tsekoura D. Oikonomopoulou

I. Karavida P. Peristeri Ch. Mpampou X. Mai **F.N. EAENA BENIZEAOY** www.hospital-elena.gr

